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ABSTRACT
Coronavirus disease 2019 (COVID-19) pandemic continues to constitute a public health emergency of 
international concern. Multiple vaccine candidates for COVID-19, which is caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), have entered clinical trials. However, some evidence 
suggests that patients who have recovered from COVID-19 can be reinfected. For example, in China, two 
discharged COVID-19 patients who had recovered and fulfilled the discharge criteria for COVID-19 were 
retested positive to a reverse transcription polymerase chain reaction (RT-PCR) assay for the virus. This 
finding is critical and could hamper COVID-19 vaccine development. This review offers literature-based 
evidence of reinfection with SARS-CoV-2, provides explanation for the possibility of SARS-CoV-2 reinfec-
tion both from the agent and host points of view, and discusses its implication for COVID-19 vaccine 
development.
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Introduction

A novel coronavirus disease (COVID-19), caused by 
severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), emerged in central China in December 2019.1,2 

Since then, the virus has spread worldwide, and more 
than 30 million cases and more than one million deaths 
have been reported, based on the COVID-19 Dashboard 
database.3 SARS-CoV-2, an enveloped and positive-sense 
single-stranded RNA virus, is a member of the genus 
Betacoronavirus, together with two highly pathogenic 
human viruses – severe acute respiratory syndrome coro-
navirus (SARS-CoV) and Middle East respiratory syn-
drome coronavirus (MERS-CoV).2 Different studies 
have suggested that bats4,5 and pangolin6,7 might be the 
original hosts of SARS-CoV-2. Because of the genomic 
similarity between SARS-CoV-2 and SARS-CoV,4,5 

these viruses are also suggested to have similar 
immunopathology.8

With no current specific treatments for COVID-19,9–11 

a vaccine is expected to provide protection against SARS- 
CoV-2 infection. In an animal model study in which rhesus 
macaques after recovering from SARS-CoV-2 infection 
were re-exposed to SARS-CoV-2, viral replication was not 
detected in anal and nasopharyngeal swabs, suggesting the 

protective effect of the primary infection.12 This promising 
result is important for vaccine development, as it suggests 
that vaccination could be an effective protective measure 
against SARS-CoV-2 infection. Currently, multiple vaccine 
candidates have entered clinical trials; more than 100 are in 
the vaccine development pipeline,13,14 and their consumer 
acceptance15 as well as the willingness to purchase16 the 
vaccine candidates have been assessed. However, recent 
studies have reported that some COVID-19 patients that 
have recovered and fulfilled the discharge criteria for 
COVID-19 continued to show a positive result to reverse 
transcription polymerase chain reaction (RT-PCR) test for 
the virus.17–21 Since these findings are critical to the design 
of a vaccine against the virus, scientists are still debating 
the authenticity of these results to determine whether rein-
fection is possible. In SARS-CoV and MERS-CoV infec-
tions, conflicting findings have been reported,22–29 and 
hence, no licensed vaccine is currently available against 
the viruses.30,31 In this review, we systematically review 
the evidence of repositive RT-PCR test results for those 
who have been declared free of COVID-19, explain the 
possibility of COVID-19 reinfection from the virus and 
host points of view, and discuss the implication of this re- 
infection possibility for the development of COVID-19 
vaccine.
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SARS-CoV-2 reinfection: the evidence from animal 
models and patients

MERS-CoV has been reported to reinfect camels, and neutra-
lizing antibodies (nAbs), while not providing full immunity, 
could still reduce the viral load.25,26 In humans, MERS-CoV 
infection induced immunoglobulin G (IgG) production and 
sustained antibody levels against spike protein to clear the viral 
load.22,23 For SARS-CoV infection, studies on mice, Syrian 
hamsters, as well as rhesus and cynomolgus monkeys reported 
that SARS-CoV reexposure conferred resistance and did not 
enhance the severity of the disease.27–29 In SARS patients, IgG 
antibodies produced after SARS-CoV infection could neutra-
lize the virus and prevent reinfection by the same virus for up 
to 2 years.24 In a small scale animal model study on rhesus 
macaques, animals that had previously tested positive for 
SARS-CoV-2 and then had a negative RT-PCR test result 
after treatment, showed no viral replication by RT-PCR assay 
of anal and nasopharyngeal swabs after SARS-CoV-2 
reexposure.12 Besides, none of the COVID-19 symptoms was 
observed, which is why scientists believe that people who 
recover from SARS-CoV-2 infection will produce antibodies 
and be immune to reinfection.

Currently, the detection of SARS-CoV-2 from patients’ 
samples relies on the use of a molecular-based diagnostic 
approach, such as RT-PCR.32 With a high level of precision 
and definitive speed to produce reliable results, this method is 
recognized as the current gold standard for SARS-CoV-2 
detection.33 However, despite its decisive role in the detection 
of viral genomes, the RT-PCR method has some limitations 
that may lead to misdiagnosis in the state of infection.33 

Therefore, other clinical characteristics need to be evaluated 
and chest computed tomography scan needs to be performed 
before patients are discharged from hospitals.20,34–36 

According to China CDC,20 a COVID-19 patient should 
meet the following discharge criteria before discharge from 
hospital: (1) afebrile state for more than three consecutive 
days; (2) improved respiratory symptoms (no cough and 
expectoration, normal ranges of interleukin-6 (IL-6) and 
C-reactive protein (CRP) as well as oxygenation index ≥ 350); 
(3) improved chest radiography; and (4) negative RT-PCR 
results for two consecutive tests with sampling interval of at 
least 24 h. Similar criteria are also issued by the US CDC,37 

which include negative real-time RT-PCR results of nasophar-
yngeal and throat swabs for at least two consecutive tests with 
sampling interval of at least 24 h, afebrile state, and improve-
ment in signs and symptoms of COVID-19.

The incidence of reinfection in COVID-19 patients who have 
recovered and had a negative RT-PCR test has been brought to 
public attention. In China, two discharged COVID-19 patients 
(39-year-old woman and 50-year-old man) were retested posi-
tive to the RT-PCR assay for the virus.19 Both patients had been 
treated with lopinavir-ritonavir, provided with supportive care, 
and were discharged after meeting the discharge criteria set by 
CDC China. Some medical workers also showed positive RT- 
PCR test approximately 5–13 days after being discharged from 
hospital in the Hubei province of China.21 Another report from 
China showed that 14.5% (n = 172) patients tested positive by 
RT-PCR after having been discharged from hospital (the median 

age was 28 years; patients included children below 12 years 
(n = 6)).20 Korean CDC reported repositive RT-PCR test results 
for recovered COVID-19 patients in Sejong city (25.9%, n = 27), 
Daegu city (27.2%, n = 195), and Gyeongbuk province (48.9%, 
n = 47).18 Approximately 59.6% of the re-positive cases had no 
symptoms, while the rest presented symptoms such as sore 
throat and cough.18 A list of studies that have reported reinfec-
tion with COVID-19 is presented in Table 1. In short, there is 
clear evidence that reinfection with SARS-CoV-2 is possible in 
humans, which should be considered in the development of an 
effective vaccine.

While the concern of SARS-CoV-2 reinfection cases have 
been raised, it is important to note that misdiagnosis for re- 
positivity may occur due to laboratory errors. Many steps 
during SARS-CoV-2 detection by RT-qPCR are prone to 
human and/or technical faults. Samples mishandling, problems 
in sensitivity and/or specificity of reagents and/or techniques 
used to detect the viral RNA, or even record keeping are 
examples of error sources that may cause atypical pattern of 
laboratory results, as suggested.38 Indeed, the newly developed 
COVID-19 reagents or even primer sets currently used in the 
RT-qPCR detection of SARS-CoV-2 RNA are factors that 
cannot be ruled out from the error equation.

SARS-CoV-2 reinfection: evidence in favor of and 
against

As an obligate intracellular parasite, a virus heavily relies on 
robust activity of host organelles, particularly ribosomes, to 
propagate and produce new virions that are ready to infect 
other healthy cells.39 To facilitate efficient transmission and its 
continuous existence, a virus requires sequential interaction 
between the infected host and other potential healthy host(s). 
Unfortunately, human cells are among the victims of patho-
genic organisms with insidious viral life cycle, which include 
SARS-CoV-2.40,41 To survive infection, humans are equipped 
with two arms of immune responses, innate and adaptive 
immunity, which provide protection from invasion by patho-
genic microbes.42 Several studies have been performed world-
wide to reveal the molecular nature and characteristics of 
SARS-CoV-2 and the clinical manifestations of COVID-19.32 

However, despite massive global cooperation, information 
about the host immune response characteristics against SARS- 
CoV-2 remains limited.

Fortunately, accumulative experience from other patho-
genic human coronavirus infections, which include SARS- 
CoV and MERS-CoV as well as from other closely related 
animal coronaviruses, has provided valuable insights into the 
viral structure, replication, potential ways of transmission, 
organ targets, clinical features, and possible pathogenic 
mechanisms of SARS-CoV-2.32,43,44 This information is 
important in fostering our efforts to mitigate COVID-19 trans-
mission, accelerate disease management, and promote empiri-
cal yet rational pharmacological as well as nonpharmacological 
interventions.

Cellular and humoral antiviral immune responses, particu-
larly adaptive immunity, are important players in the contin-
uous host protection against cytopathic viruses.45,46 The 
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presence of memory T cells and B cells with the ability to 
produce antibodies immediately upon reintroduction of 
a pathogen provides steadfast response and a high level of 
protection to the host,39,45 which in turn leads to continuous 
protective immunity. However, in the event of reinfection 
Table 1, this particular immunological concept is profoundly 
challenged.

Recent reports showed that B cells play an important role in 
the clearance of SARS-CoV-2, mostly through the production 
of nAbs.47,48 However, the duration of host protection by these 
nAbs remains unknown. With the detection of SARS-CoV-2 
in discharged patients, which is currently considered 
reinfection,20,32,49–52 many have questioned whether prolonged 
immune protection against SARS-CoV-2 truly prevails. In this 
section, the results and evidence from different fields are dis-
cussed and possible explanations on the caveats of host 
defenses that may lead to relapse and/or reinfection are pro-
vided. The possible explanations or arguments are provided 
based on two factors: the host and the agent.

Host point of view

Accumulated evidence has demonstrated that COVID-19 
patients with moderate to severe disease level suffer from 

different types of symptoms, including decreased number of 
lymphocytes known as lymphopenia.51,53,54 Lymphocytes, 
which comprise T and B cells, are the sole players of human 
adaptive immunity,45,46 and therefore, any deleterious effect on 
the quality and quantity of these cells may cause serious con-
sequences on the integrity of host anti-SARS-CoV-2 immune 
responses.

A recent report suggested that lymphopenia occurs because 
of the extensive killing of lymphocytes in COVID-19 patients, 
and this event is apparently linearly correlated with IL-6 level 
and Fas-FasL interactions.55 Lymphopenia may occur as 
a collateral damage because of increasing pro-inflammatory 
cytokine levels in COVID-19 patients41,56,57 or because of direct 
consequence of SARS-CoV-2 infection on lymphocytes.58 Both 
these proposed mechanisms in cell death-mediated lymphocyte 
reduction in COVID-19 patients are illustrated in Figure 1A. 
However, whether SARS-CoV-2 virions can infect lymphocytes 
and directly promote the destruction of infected lymphocytes 
remains an interesting aspect of investigation.

Lymphopenia in COVID-19 patients correlates with disease 
severity,51,56 probably owing to the important role of lympho-
cytes in providing adaptive protection against viral infections 
such as SARS-CoV-2.8 In general, patients with lymphopenia 
most likely have low levels of B and/or T memory cells.59 

Figure 1. Potential causes of lymphopenia in COVID-19 patients. (A) Lymphopenia is possible to occur as a result of T cell depletion due to either SARS-CoV-2-mediated 
or IL-6-mediated pyroptotic cell death. (B) Alternatively, lymphocyte count in circulation may be reduced due to massive infiltration of lymphocytes into infected tissues 
(e.g. alveolus) (created with BioRender).

3064 F. NAINU ET AL.



Indeed, extensive infiltration of lymphocytes into infected tis-
sues or organs, including the lungs, as suggested by recent 
reports,60,61 may result in low lymphocyte numbers Figure 
1B. Nevertheless, owing to the roles of memory lymphocytes 
in providing prolonged antiviral protection,45 the decreased 
quantity (as well as quality) of these cells will dampen the 
host immune responses against reintroduction of previously 
encountered pathogenic microbes. In the context of SARS- 
CoV-2 infection, lymphopenia may lead to suboptimal produc-
tion of anti-SARS-CoV-2 nAbs and/or reduced activities of 
CD4 helper T cells as well as CD8 cytotoxic T cells.41 Taking 
that into account, it is possible that recovered COVID-19 
patients with lymphopenia history may have increased vulner-
ability to SARS-CoV-2 reinfection.

As mentioned before, the occurrence of lymphopenia is asso-
ciated with increased levels of proinflammatory cytokines such as 
IL-6.55 Normally, proinflammatory cytokines are expressed as an 
initial response to the presence of foreign materials, including 
viral particles, and the expression decreases gradually during 
resolution of the inflammation.46 These foreign materials can be 
characterized as pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patters (DAMPs).62 

Both PAMPs and DAMPs are detected by pattern recognition 
receptors (PRRs) in a manner dependent on their unique 
structures63 leading to the activation of a signaling cascade via NF- 
kB and/or IRF pathways to produce antiviral molecules/effectors 
and/or pro-inflammatory cytokines.62,64 Elevated levels of proin-
flammatory cytokines have been suggested as one of the drivers of 
lymphocytes killing in COVID-19 patients.40,41,65

As the expression of proinflammatory cytokines is one of 
the most tightly regulated processes in the human body,42,46 it 

is important to investigate the reasons for the breach of such 
tightly regulated processes upon SARS-CoV-2 infection. 
Nonetheless, based on the well-known tripartite correlation 
between increased level of proinflammatory cytokines, cell 
death, and tissue injury,46 investigational studies to answer 
these questions will probably uncover the fundamental aspects 
on why reinfections occur and patients that are likely to experi-
ence reinfection, if reinfection is possible in the first place.

Another striking report regarding the characteristics of 
COVID-19 patients and lymphopenia is the presence of PD1 
and TIM3, which are markers of T cell exhaustion.56 In general, 
T cell exhaustion is characterized by inadequate effector func-
tion, persistent expression of inhibitory markers such as PD1 
and TIM3, and a distinctive transcriptional profile compared 
with that of normal effector and/or memory T cells.66 It has 
been suggested that these exhaustion characteristics cause 
insufficient T cell-mediated control of chronic infection,66,67 

which may provoke relapse and/or recurrent infection.
In general, host immune responses are rapidly activated in 

the event of viral infection,45 and the induction of humoral and 
cellular immune responses has been documented during 
human coronavirus 229E,68 SARS-CoV,69,70 and MERS-CoV 
infections.71,72 This adaptive immunity might persist in the 
recovered patients for up to several years,73 thus implying 
that reinfection is plausible after the levels of memory cells 
and antibodies of adaptive immunity are diminished. However, 
in the context of COVID-19, this alternative scenario might 
not be the case as reinfections were reported soon after the 
patients were discharged from hospitals Table 1.20,32,49–52

Thus, while all of our speculations Figure 2 remain to be 
demonstrated experimentally, reintroduction of SARS-CoV-2 

Figure 2. Possible cause(s) of re-positivity of COVID-19 patients. Status of SARS-CoV-2 negative patients are decided based on at least two consecutive negative results 
on SARS-CoV-2 presence in patients’ samples using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Plausible assumptions of patients who 
turned positive RT-qPCR after discharged from hospital are based on the status of patients’ adaptive immunity (exhaustive memory cells and/or depleted memory cells) 
and the origin of SARS-CoV-2 present in the patients’ samples (either already present in a low copy number or obtained by reexposure). The scarce evidence is unbale to 
conclude either this as reinfection or relapse cases (created with BioRender).
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into convalescent individuals with lymphopenia history may 
not only cause reinfection but also provide clues about the 
unexplored potential of convalescent plasma therapy in the 
management of COVID-19.

Virus point of view

In response to the COVID-19 pandemic, rapid and reliable 
methods for the detection of SARS-CoV-2 are urgently needed. 
Currently, the RT-PCR technique can be adopted to vigorously 
assess samples within several hours. The fundamental principle 
of this method is the detection of SARS-CoV-2 genetic material 
in a manner dependent on the action of reverse transcriptase 
and optimal amplification by DNA polymerase.74 However, 
false negative results can occur owing to a really low level of 
starting genetic materials present in the examined samples 
Figure 2, leading to misinterpretation of supposedly positive 
results as negative for SARS-CoV-2.

To this date, most of reinfection cases were reported from 
China despite the fact that COVID-19 pandemic has been 
occurred for several months in more than 200 countries. 
Many factors, including laboratory errors as described above, 
may play a role in the detection of false-positive reinfection 
cases. In addition to that, variation of swab sites for SARS-CoV 
-2 sample detection, oral, anal, sputum, saliva, and nasophar-
yngeal swabs, may yield different results, as suggested in recent 
publications.75,76 In respect to the immunogenicity data, there 
is a possibility that patients may yield different results; tested 
negative from samples collected in one site but potentially 
positive in samples taken from other swab sites. With this in 
mind, it might be important to compare laboratory data using 
the same swab sites and diagnostic parameters before jumping 
to conclusion.

SARS-CoV-2, with ssRNA as its genome, uses RNA- 
dependent RNA polymerase (RdRp) in its replication, and 
owing to its error-prone tendency, RdRp may produce proge-
nies with slightly mutated genes.77 A recent report has sug-
gested the presence of mutations in SARS-CoV-2 genome, 
particularly in ORF1ab, ORF8, and N genes.78 The RT-PCR 
method used for the detection of SARS-CoV-2 heavily relies on 
the amplification of particular sequences in SARS-CoV-2 
genes; hence, mutation at primer and/or probe sites may 
cause false-negative detection, and SARS-CoV-2-infected per-
sons may show negative results. However, with several uncer-
tainties in the characteristics of the SARS-CoV-2 genome, it 
remains difficult to conclude whether the mutations identified 
in the viral genome are responsible for the improper detection 
of SARS-CoV-2 in the clinical setting.

Alternatively, certain mutations in the viral RNA genome 
may lead to changes in epitope structure and/or characteristics 
and thus result in the production of progenies with new anti-
genic determinants, as shown in the case of influenza virus.79 If 
reinfection occurs, the antibodies produced in the previous 
(primary) infection may not be able to recognize the epitope 
of the new virus. In this case, host defense towards infection 
will start from the beginning (from innate to adaptive immune 
activation), which eventually will result in either a successful 
recovery or reinfection.

Previous studies have pointed out the possible involvement 
of viral evasion strategies in the pathogenesis of SARS-CoV-2 in 
humans.8,80 As seen in cases of HIV, HBV, and HCV, evasion of 
host defense is one of the strategies used by the virus to initiate 
a chronic state of infection.81,82 Chronic infection has been 
linked to the reemergence of infection or relapse state. Relapse 
is different from reinfection; relapse is described as a recurrent 
infection with the same type of pathogen that was present 
beforehand, whereas reinfection is defined as the emergence of 
infection with a different species or serologic strain of pathogen, 
as seen in other infectious diseases.83,84 It is yet unclear whether 
relapse or reinfection occurs in COVID-19 patients.

An experimental study to assess the possible occurrence of 
reinfection using rhesus macaque showed that primary SARS- 
CoV-2 infection could provide adequate protection against 
subsequent exposure.85,86 Nevertheless, while the current data 
from a SARS-CoV-2-infected animal model are likely to sup-
port protective immunity against reinfection, related studies 
are still in early stages. Based on experience from animal 
coronaviruses,87 including other human coronaviruses,88 it is 
tempting to speculate that reinfection is likely to occur in some 
people. This is practically possible in immunodeficient indivi-
duals with limited capacity to mount proper adaptive immu-
nity and/or those that failed to produce sufficient memory 
cells.89 However, recurrent infection may not be a general 
feature of COVID-19, as the cases reported so far are not 
particularly high.20,49,50 Further experiments are needed to 
provide a definitive answer.

Implication in vaccine development

A vaccine aims to stimulate the cellular and humoral immunity 
of the adaptive immune system to recognize a pathogen and 
mount sufficient numbers of memory T and B cells as well as 
long lasting nAbs against the pathogen. Therefore, it is 
expected to protect the vaccinated individual from severe dis-
ease when infected by the specific pathogen the vaccine was 
designed for. Unlike cancer vaccines, which have also been 
used for immunotherapy (postphylaxis), vaccines against 
infectious disease-related pathogens are usually administered 
as a means of prevention (prephylaxis).90

Vaccine candidates currently developed against SARS-CoV 
-2 come in different forms, which include the classic whole- 
virus vaccines (both inactivated and live attenuated vaccines), 
genetic vaccines in the form of DNA or RNA vaccines, viral 
vector vaccines, and protein-based vaccines in the forms of 
virus-like particles (VLPs) or subunit vaccines.91 In order for 
a vaccine to be effective, several immunological factors have to 
be taken into account.

COVID-19 vaccine should induce protective and durable 
immunity

An effective vaccine ideally aims to prevent vaccinated indivi-
duals from target pathogens by stimulating the memory 
mechanism of protective humoral and cellular immunity; this 
protection should be long lasting. However, natural infection 
by coronaviruses does not usually result in long-lasting 
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protective immunity, and antibodies wane within a few years 
or even months.92 A similar phenomenon has been observed 
with immunity to SARS-CoV-2. Short duration of immune 
protection may allow reinfection by the same virus once the 
stimulated protective memory component of the adaptive 
immune system has depleted. Impaired immunity and disease 
severity in COVID-19 result from viral interference with type 
I interferon (IFN-I) synthesis.93 IFN-I plays a critical role in the 
activation and maturation of the adaptive immune system, 94 

and inhibition of IFN-I synthesis hinders the activation and 
maturation of B cells,95–97 dendritic cells (DC),98 and T cells.99

Consequently, vaccine design should not only mimic nat-
ural SARS-CoV-2 infection through the administration of 
appropriate antigens, but vaccine components should also be 
engineered to stimulate stronger immune response both in 
magnitude and durability than what is achievable by natural 
infection. One possible way is by enhancing the innate immune 
response, especially by pathways regulating the adaptive 
immune response, such as, but not limited to, IFN-I 
synthesis.100

Vaccine adjuvants have been shown to increase the durabil-
ity of the immune response elicited by a SARS-CoV whole 
virus vaccine candidate. Different adjuvants including alum, 
CpG, Adva, and delta-inulin-based polysaccharide increased 
serum nAb titers and reduced lung virus titers in mice.92 The 
use of alum in a yeast recombinant Hepatitis B (HBV), for 
example, had an increasing seroprotective effect in adults 
≥40 years old.101

Several antigen delivery systems currently used in the devel-
opment of SARS-CoV-2 vaccine candidates may also enhance 
the innate and adaptive immune responses. Liposomes, for 
example, are synthetic phospholipid bilayers mimicking the 
plasma membrane of living cells. Liposomal delivery systems 
may be engineered to constitute phospholipid types, which act 
as intracellular messengers in modulating innate and adaptive 
immunity. Liposome surfaces can also be decorated with adju-
vants or PAMP entities such as lipopolysaccharides (LPS) to 
stimulate the corresponding pattern recognition receptors 
(PRR), such as the toll-like receptors (TLR), which in return 
induces IFN-I expression.102

DNA vaccine encoding SARS-CoV-2 protein utilizes the 
adenoviral vector (Ad) as a delivery system.103 The Ad vector, 
for more or less than a decade, has been shown to activate or 
transduce DCs, macrophages, and natural killer (NK) cells. Ad 
vector also plays a role in IFN-I induction, which is important 
for the efficacy of Ad-based vaccines, and has a critical role in 
antigen presenting cell (APC) maturation and proinflamma-
tory cytokine induction and regulation. IFN-I induction by Ad 
vector is mediated by the TLR9 and RIG-I receptors of the 
innate immune system.104

VLP and other protein-based nanocages (PNC) are com-
posed of an assembly of monomeric subunit proteins such as 
viral capsid proteins, or other protein subunits such as the 
small heat shock protein, forming a cage-like 
nanostructure.105 VLP-based vaccines are either composed of 
native SARS-CoV-2 capsid proteins91 or a heterologous VLP 
platform presenting the SARS-CoV-2 spike protein on the 
surface.106 The assembly of monomeric subunit proteins to 
form the VLP or PNC structure is advantageous in immune 

response enhancement in several ways. Firstly, the structural 
assembly provides a repetitive antigen presentation motif with 
high spatio-geometric density, which is known to enhance the 
immunogenicity and responsiveness of B cells.107 Secondly, the 
repetitive nature of VLP and NPC assembly provides a PAMP 
motif allowing recognition by PRR, such as the TLR, and 
leading to IFN-I synthesis.108 Thirdly, VLPs can activate DCs 
and enter APCs, including DC, to present antigens via the 
MHC Class I and MHC Class II pathways and therefore med-
iate the cytotoxic T cell and helper T cell immune response, 
respectively.108–111 Small heat shock protein nanocages, with-
out any additional antigen, induced the formation of 
bronchus-associated lymphoid tissue (iBALT) in the lung 
when inoculated intranasally and showed protection against 
lethal challenge induced by viral respiratory pathogens, includ-
ing SARS-CoV.112 A similar phenomenon was also observed 
when the inoculation with antigen-free papaya mosaic virus 
(PapMV) VLP showed protection against influenza or 
Streptococcus pneumoniae challenge in mice.113 The observed 
protective immune response was mediated by the innate 
immunity, most likely involving neutrophils and CD11c+ 
cells.113

HPV vaccines are made of virus-like particles (VLP) 
assembled from recombinant HPV coat proteins (L1). The 
fact that the vaccine is highly immunogenic and is very effec-
tive in preventing infection long-term114,115 may be due to the 
immunogenic properties of the close geometrical spacing of the 
repetitive antigen presented on the VLP.90,116 However, the L1- 
based VLP vaccine does not have an effective post-exposure 
therapeutic effect to clear HPV infected tumour cells. HPV- 
associated tumour progression is the result of HPV DNA 
integration into the host cell DNA, inactivating some HPV 
genes, including L1, and upregulating HPV E6 and E7 protein 
expression, which play a role in host cell transformation into 
tumour cells. The inactivation of L1 protein hinders their 
presentation via the MHC Class I and MHC Class II pathways 
on the infected host cells, and as a consequence, also the L1- 
based vaccine stimulated cytotoxic and helper T cell 
clearance.117 To circumvent this, efforts have been made to 
develop vaccines using the continuously expressed E6 and E7 
as antigens.118 In the context of VLP-based vaccine, the encap-
sidation technology119 may be useful to ensure entry of the E6 
and E7 antigens into APCs and to prevent extracellular anti-
body neutralisation.

The ability of pathogenic viral proteins to interfere with the 
innate and adaptive immune response in the form of altered 
gene expression conferring tolerance or other forms of 
immune evasion has been observed.120,121 For the corona-
viruses, several structural and non-structural proteins which 
play a role in pathways leading to IFN-I and III expression have 
been identified,122 including nsp16,123 membrane,124,125 

nucleocapsid,126 amongst others. Some of these immune eva-
sive proteins have a high homology with SARS-CoV-2 
proteins.127 Recent literature suggested that the non- 
structural protein128 and the ORF3 protein129 of the virus 
may interfere with the immune response. Therefore, the inclu-
sion of these proteins in a vaccine design should be evaluated.

In addition, a strong antibody response and T cell response 
to ensure protective and enduring immunity requires 
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prolonged antigen exposure to B and T cells in a dose- 
escalating manner.130,131 Accordingly, COVID-19 vaccine 
engineering may utilize a controlled-release delivery technol-
ogy, and repeated vaccination in a dose-escalating manner may 
also provide a similar benefit.

COVID-19 vaccine should stimulate humoral and cellular 
immunity

Protective immunity against a pathogen usually depends on the 
availability of nAbs and effector T cells at the time of 
infection.132 To induce protective immunity, vaccines are pri-
marily designed to induce nAb expression by the adaptive 
immune system and the corresponding formation of memory 
B cells that can be rapidly activated after antigen reexposure.130 

The function of nAbs is to prevent viral interaction with the 
host, and hence, much work has been done in vaccine devel-
opment to evaluate the generation of antibodies capable of 
binding to the receptor-binding domain (RBD) of the SARS- 
CoV-2 spike protein. The RBD plays a role in viral binding to 
the angiotensin-converting enzyme-2 (ACE-2) receptor in 
a variety of host cell types.133,134 Antibodies that specifically 
bind to this domain prevent the entry of the SARS-CoV-2 into 
the host cells and therefore exhibit neutralizing properties.135

The generation of memory B cells and nondividing bone 
marrow-resident plasma cells for long-term antibody produc-
tion protective for the next bout of infection requires antigenic 
multivalency and antigenic threshold. Repetitive antigen and 
a longer duration of antigen exposure during natural infection 
or vaccination may increase the activation of germinal centers 
and thus the number of activated T and B cells, and hence, 
increased amount of long-lived plasma cells as well as memory 
B and T cells.90,116

A recent study also pointed out that SARS-CoV-2 could 
enter T cells with an alternative receptor, possibly CD147, 
through a yet unidentified region on its spike protein.136 

Hence, identification of this binding region and its correspond-
ing nAbs would be important in preventing T cell infection and 
consequently T cell response impairment.

Stimulation of cellular immunity through corresponding 
T cell activation should be targeted concurrently with the 
generation of antibody-related responses against SARS-CoV 
-2. Single-cell RNA sequencing analysis of the bronchoalveolar 
lavage fluid (BALF) from COVID-19 patients demonstrated 
the crucial role of cytotoxic T cells (Tc) during recovery from 
COVID-19.137 Clonally expanded effector Tc of homogenous 
transcriptional profile with tissue-resident characteristics and 
the upregulation of genes associated with activation, migration, 
and the cytokine pathway are the hallmarks of Tc population in 
the BALF from moderate COVID-19 patients. However, 
severe/critical patients display an ensemble of highly prolifera-
tive T cells with heterogeneous transcriptional profiles and 
upregulation of genes associated with translation initiation, 
cell homeostasis, and nucleoside metabolic pathway.137 

Moderate COVID-19 cases are also marked by elevated T cell 
recruitment into the lung, whereas chemokine recruitment 
favors inflammatory monocytes and neutrophils into the 
lungs in severe/critical cases.137 Analysis of Tc responses in 
COVID-19 patients revealed that the majority of convalescent 

individuals generate Tc responses, responding to Tc epitopes 
from the spike (26%), membrane (22%), nonstructural protein 
(15%), nucleocapsid protein (12%), ORF8 (10%), and ORF3a 
(7%).138 Consequently, in addition to the spike protein, 
a vaccine designed to concurrently target Tc response should 
also consider the delivery of nonspike SARS-CoV-2 proteins 
related to Tc responses.

Analysis of helper T cell response revealed their important 
role in patient recovery from COVID-19, with T helper 1 (Th1) 
showing the prominent response.138,139 Unlike the non-spike 
Th response, spike-specific Th response correlated well with 
the magnitude of anti-RBD spike protein IgG and IgA 
responses. Th responses were mostly directed towards the 
spike (27%), membrane (21%), and nucleocapsid protein 
(11%) of SARS-CoV-2.138 As Th response plays a significant 
role in B cell maturation to generate nAbs, the raising of Th 
response should be considered in vaccine design for 
COVID-19.

In order for a vaccine to generate a T cell response, T cell- 
associated antigens need to be delivered into the host cellular 
compartment to stimulate the cellular immune response. 
Moreover, it would be advantageous to minimize the genera-
tion of antibodies against T-cell associated antigens, which may 
prevent the corresponding antigens from reaching the host 
cellular compartment during natural infection. This may be 
achieved by encapsulating the T cell-associated antigen vaccine 
component inside the relevant delivery system (such as in the 
use of VLPs119 and liposomes) or engineer their expression 
inside the host cell (such as in the use of RNA and DNA 
vaccines). Moreover, T cell epitopes are associated with HLA, 
and therefore, T-cell based vaccine candidates should be 
designed to encompass the majority of the global 
population.140

Immunity works by exerting both the humoral (antibody- 
based) and cellular (T cell-based) immunity. In vaccine devel-
opment, the correlate of protection should be determined and 
the presence of immune-related adverse events should be 
tested and avoided.

The RNA polymerase of RNA vaccines such as SARS-CoV 
-2 are known to be error-prone, and therefore, may introduce 
frequent mutations.141 Although the mutational rate of SARS- 
CoV-2 is lower than influenza,142 a future mutation altering the 
conformational structure of nAb recognition sites of the SARS- 
CoV-2 protein may result in possible reinfection. Furthermore, 
a vaccine designed to stimulate cross-protective immunity 
would be a good strategy to prevent or reduce the severity of 
disease from other possible pandemic coronavirus strains in 
the future.143

A cross-protective vaccine may utilize conserved T and 
B cell epitopes to stimulate cross-protective immunity.144,145 

Conserved or partially conserved T cell epitopes are commonly 
easier to identify and engineer than conserved B cell epitopes 
due to the conformation-dependent nature of B cell 
epitopes.146,147

A natural T cell response may not prevent infection but may 
reduce the severity of the disease.148 Therefore, even if reinfec-
tion occurs in a state of reduced antibody levels, there is 
a possibility that pre-existing T cell immunity may prevent 
clinically severe disease. Moreover, conserved or partially 
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conserved T cell epitopes from other circulating coronaviruses 
including those that cause the common cold may have pro-
vided a broadly cross-protective T cell immunity against SARS- 
CoV-2 in unexposed individuals. This may explain why 
a significant number of SARS-CoV-2 positively tested indivi-
duals are asymptomatic/presymptomatic or show only mild 
symptoms or moderate disease in SARS-CoV-2.149 However, 
it has to be kept in mind that during the period of natural 
SARS-CoV-2 infection, with or without symptoms, a patient 
may still transmit the virus to other people in their vicinity, 
who may be at higher risk in contracting a more severe disease.

A T cell-based SARS-CoV-2 vaccine utilizing conserved 
T cell epitopes shared amongst coronavirus strains (those 
causing common cold and also the more severe disease such 
as SARS and MERS), may not only confer some protection 
against SARS-CoV-2 in terms of reducing disease severity but 
may also protect from other potential coronavirus pandemic 
strains in the future. These T cell-based vaccines can be used as 
a prepandemic vaccine or administered in the early phase of 
a pandemic to reduce health and disease burden before an 
antibody-based vaccine becomes available.30,150

Studies on Th responses have identified SARS-CoV-2 epi-
topes that have also been found in previously circulating 
human coronaviruses,149,151 which may play a role in the 
immune protection of unexposed and recovered patients of 
COVID-19. Conserved antibody recognition site152 and cross- 
protective Th epitopes on the SARS-CoV-2 S protein149,151 

have been identified and their use in vaccine design may help 
from severe re-infection of SARS-CoV-2 or infection from 
a future coronavirus related pandemic.

Nonetheless, T cell immunity may only protect to a certain 
extent, and therefore, a combination with antibody-based 
immunity will be the best approach in vaccine development. 
Moreover, there are additional factors to consider, such as 
ruling out immune-related adverse events (irAE)153 and deter-
mining the correlates of protection of both T cell-based and 
antibody-based immunity.90 Epidemiologically, a current esti-
mate of 70% vaccinated individual in the population will result 
in herd immunity and thus reduce the transmission of the virus 
in the population to a negligible level.154–156

Conclusion and future perspectives

The transmission of infectious viral particles from one host to 
another usually triggers vigorous host immune responses lead-
ing to the clearance of viral particles. However, in some cases, 
the virus cannot be cleared off, resulting in either the death of 
the infected host or the emergence of persistent infection. In 
another scenario, host immunity can remove the viral particles 
in the primary infection but fails to protect the host from 
reinfection. There is still limited knowledge about whether 
the reported reinfection cases of COVID-19 were accurately 
described as reinfection or whether they were simply due to the 
failure of currently available methods to detect the low copy 
number of SARS-CoV-2 in certain patients, which led to 
a relapse. To improve our understanding on this issue, suitable 
model organisms to investigate the nature of reinfection and 
elucidate its possible mechanistic basis are urgently required.

Due to its insidious life cycle in the host cells, SARS-CoV-2 
can achieve continuous transmission among humans. For sus-
ceptible hosts such as immunodeficient, older people, and those 
with associated comorbidities, SARS-CoV-2 primary infection 
increases the risk of death. To avoid such outcome, effective and 
safe vaccination to achieve herd immunity in the given popula-
tion is the best option to adopt. However, with the challenges 
associated with development of an effective COVID-19 vaccine 
and the probability of reinfection by SARS-CoV-2, if that is 
truly possible, the risk of death of susceptible hosts may persist. 
In such conditions, avoidance of reinfection is the only available 
option, however difficult it might be to achieve.
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